

OA-Mine: Open-World Attribute Mining for E-Commerce Products with Weak Supervision

¹Xinyang Zhang, ²Chenwei Zhang, ²Xian Li, ³Xin Luna Dong, ⁴Jingbo Shang, ⁵Christos Faloutsos and ¹Jiawei Han

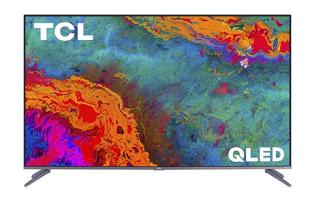
¹University of Illinois at Urbana-Champaign ³Meta (Facebook) ²Amazon, Inc.

⁴University of California San Diego ⁵Carnegie Mellon University

Presented by Xinyang

April 29, 2022

What is Product Attribute Mining?



- With Deal: \$449.00
- Superior 4K Ultra HD: Picture clarity combined with the contrast, color, and detail of Dolby Vision HDR (High Dynamic Range) for the most lifelike picture
- Screen Size 50 Inches
 - TCL
- QLED: Quantum dot technology delivers better brightness and wider color volume, Panel Resolution :3840 x 2160, Viewable Display Size: 49.5 inch

- ☐ Given product text
- Extract
 - ☐ Attribute (types). E.g., "resolution"

Brand

Values. E.g., "4K UHD"

What is Open-World and Why?

- ☐ The set of attributes (types) and values are not known beforehand
- Want to find new attributes and new values

	Attribute	Value
Prior work (NER)	Closed-world	Open-world
OA-Mine	Open-world	Open-world

- ☐ Why?
 - Existing types of products may get new attributes
 - E.g., TV, HDR compatibility not seen 10 years ago
 - New types of products may emerge
 - ☐ E.g., VR headsets not seen 10 years ago

Weak Supervision

- ☐ Full supervision is expensive and infeasible
 - ☐ E-commerce products expand every day
- Our supervision: seed examples
 - Give a few known attribute values, for each known product type
 - Example:
 - Tea: [[loose leaf, tea bag], [green tea, black tea]]
 - Coffee: [[whole bean, k-cup], [dark roast, light roast]]

Problem Setting

- Input
 - Product data: product text + product type
 - □ E.g., tea product: "Two Leaves and a Bud Organic Peppermint Herbal Tea Bags..."
 - ☐ Weak supervision: seed attribute values for a few known types
 - □ E.g., {tea: [[green tea, black tea], [loose leaf, tea bag]], coffee: [[whole bean, k-cup]]}
- Output
 - New attribute types and values

(Item Form) (Type)
Loose leaf Green tea
Tea bag Black tea ...
Sachet Oolong tea
...

(Item Form) (Flavor)
Whole bean Cinnamon
K-cup Vanilla
Sachet Pumpkin hazelnut

Our Contributions

- New problem:
 - Open-world attribute mining
 - Weak supervision
- New data:
 - Amazon data with human annotations
- New solution:
 - ☐ A principled framework w/ a focus on attribute-aware representation learning.

Our Dataset

- 80.6K Amazon products from 100 product types
- Development set
 - Covers all 100 product types
- ☐ Labels derived from Amazon product profiles
- Test set
 - Covers 1,943 products from 10 product types
 - Each labeled by 5 MTurk workers
 - Consolidated by expert knowledge associates

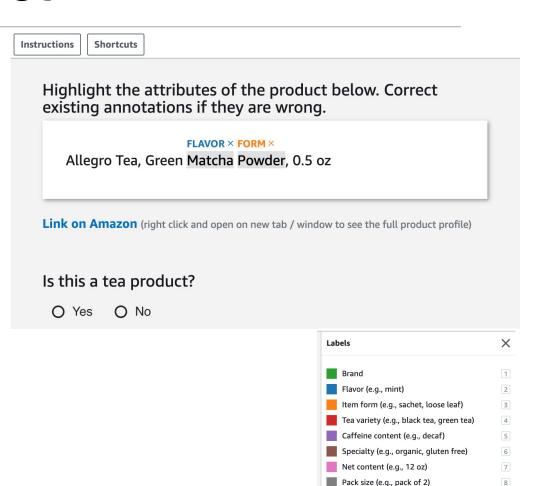
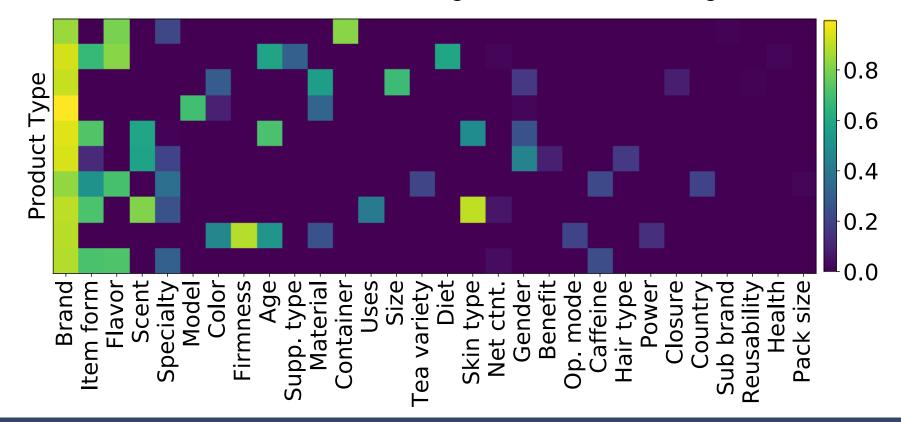


Figure. Our labeling tool

New attribute (attribute not from above)

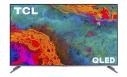
Why Open-World Attribute Mining? (cont')

- Attributes and values missing from the catalog
 - Humans found 51 attributes, 21 are missing
 - ☐ For the 30 attributes found in the catalog, 60% values missing



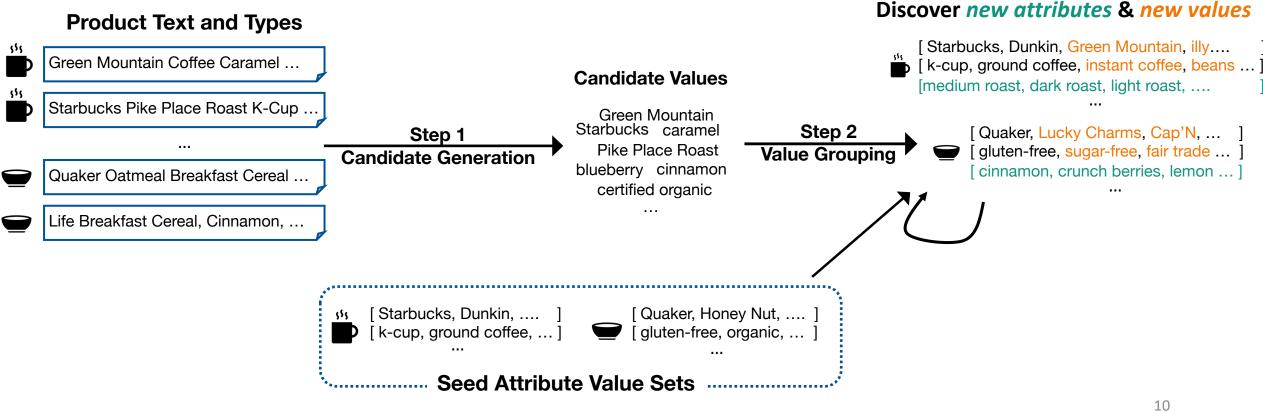
Observation from Data

- Observation 1 (title first)
 - □ To maximize exposure of products to customers, sellers usually pack the highlights of their product in the title
- Observation 2 (bag-of-values)
 - □ A product title rarely contains irrelevant information, and is a collection of attribute values
- Observation 3 (value exclusiveness)
 - ☐ With limited space in the title, the values seldom repeat



TCL 50-inch 5-Series 4K UHD Dolby Vision HDR QLED Roku Smart TV, Black

Framework Overview



Step 1: Attribute Value Candidate Generation

Attribute Value Candidate Generation: Goal

- ☐ Goal: obtain candidate attribute values from products with *high recall*
- Example
 - Input: Green Mountain Coffee Roasters Caramel Vanilla Cream, Ground Coffee, Flavored Light Roast, Bagged 12 oz
 - Output: "Green Mountain Coffee Roasters", "Caramel Vanilla Cream", "Ground Coffee", "Bagged", "12oz"

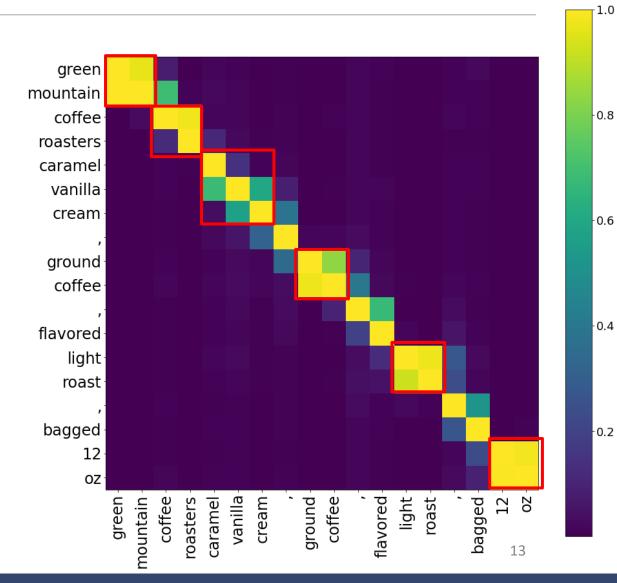
Method: Title Segmentation from Perturbed Masking

- Idea: pre-trained LM should capture word to word impact [1-3]
- ☐ Steps:
 - Language model fine-tuning
 - ☐ Build a word to word impact matrix
 - Chunk out attribute candidates based on scores in the matrix

$$s(w_i, w_{i+1}) = d(BERT(W/\{w_i\})_i,$$

 $BERT(W/\{w_i, w_{i+1}\})_i)$

[3] Gu, Xiaotao, et al. "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging." KDD (2021).

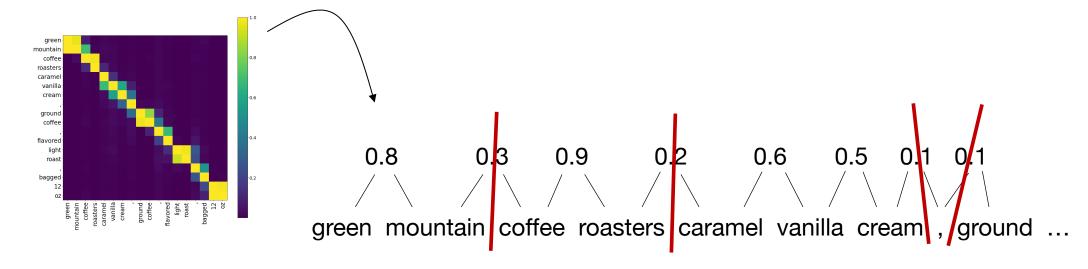


^[1] Wu, Zhiyong, et al. "Perturbed masking: Parameter-free probing for analyzing and interpreting bert." ACL (2020)

^[2] Kim, Taeuk, et al. "Are pre-trained language models aware of phrases? simple but strong baselines for grammar induction." ICLR (2020)

Method: Title Segmentation from Perturbed Masking (cont')

- Chunking attribute values from the impact matrix
 - We use chunking based on impact scores of adjacent tokens. If score < threshold, we do a split.</p>



Quantitative Results

Table 1: Evaluation on Attribute Value Candidate Generation. Methods are divided into pre-trained, distantly supervised, and unsupervised, from top to bottom.

Methods	Entity-Prec.	Entity-Rec.	Entity-F1	Corpus-Rec.	
spaCy [7]	31.19	19.15	23.73	50.02	
FlairNLP [1]	34.81	24.33	28.64	52.17	
AutoPhrase [13]	26.58	29.67	28.04	32.39	
UCPhrase [6]	35.01	19.66	25.18	37.50	
OA-Mine	42.53	53.29	47.30	64.10	

Step 2: Attribute Value Grouping

Value Grouping Goal

☐ Goal: group values into attributes with seed as guidance

caramel vanilla cream PT = coffee light roast

ground coffee

light roast medium roast dark roast medium dark roast

pumpkin cinnamon salted caramel

vanilla

unsweetened PT = tea

black tea

black tea green tea macha tea

bottled sachet packs

Seed (known attribute values): light roast, black tea, ...

Value Grouping Overall Idea and Challenges

- Overall idea: clustering on value candidates
- Challenge:
 - Pre-trained BERT is not attribute-aware
 - Generalization to new attributes and product types
 - Some attributes may not have human given seed values
 - Noise from candidate generation

Problem with BERT Embedding for Attribute Grouping

- Why not BERT + clustering?
 - Distance metric between two embedding vectors does not fully capture attribute information

■ Need to make phrase embedding attribute aware

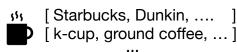
Attribute-Aware Fine-Tuning

Value Candidates

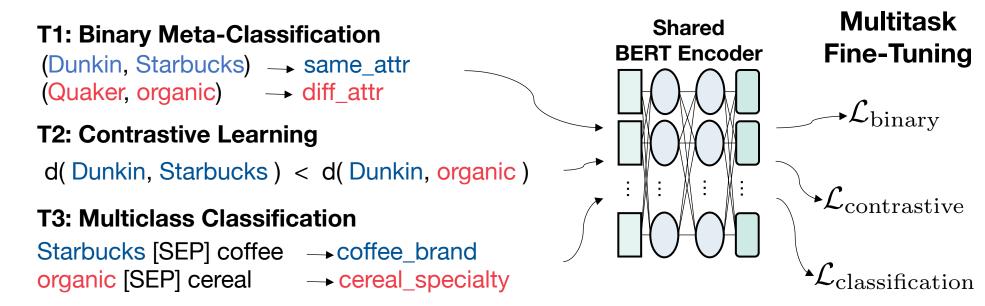
Green Mountain Starbucks caramel Pike Place Roast blueberry cinnamon certified organic

..

Seed Attribute Value Sets



Unlabeled Data + Value Exclusiveness

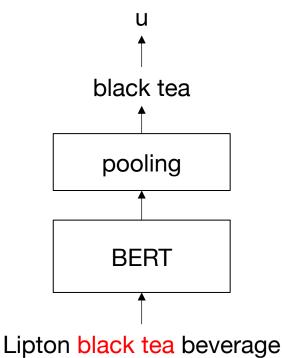


Attribute-Aware Fine-Tuning: Model & Objectives

- Shared encoder: BERT + entity pooling
- Objectives

$$\mathcal{L}_{\text{binary}} = \sum_{(u,v)\in P} \|1 - f(u,v)\|^2 + \sum_{(u,v)\in N} \|-1 - f(u,v)\|^2$$

$$\mathcal{L}_{\text{contrastive}} = \sum_{(v_a, v_p, v_n)} \max \left(\left\| f(v_a, v_p) \right\|^2 - \left\| f(v_a, v_n) \right\|^2 + \alpha, 0 \right)$$



$$\hat{\boldsymbol{y}} = \operatorname{Softmax}(\operatorname{Linear}(\operatorname{BERT}(W[\operatorname{SEP}]t)))$$

$$\mathcal{L}_{\text{classification}} = \text{CrossEntropy}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

Self-Ensemble Inference & Iterative Training

- Attribute discovery & noise handling: DBSCAN
 - Discover attribute value cluster by local density
 - Generates a large noise cluster
- Improving recall: classifier
 - ☐ Use the classifier to pick values back from noise cluster to discovered attributes
- Iterative training
 - Confident predictions from one iteration is used to train the next iteration
 - Benefit: next iteration will have a more complete set of attributes for training

Main Experiments

Table 2: End-to-end evaluation on development and test data. Results are average of 3 runs. Bold faced numbers indicate statistically significant results from t-test with 99% confidence.

		Dev Set (100 product types)			Test Set (10 product types)				
Method Type	Method	ARI	Jaccard	NMI	Recall	ARI	Jaccard	NMI	Recall
Sequence tagging (closed-world)	BiLSTM-Tag	0.299	0.354	0.422	0.565	0.175	0.219	0.374	0.162
	OpenTag [22]	0.244	0.324	0.334	0.593	0.160	0.247	0.357	0.165
	SU-OpenTag [18]	0.637	0.598	0.607	0.525	0.411	0.340	0.542	0.162
Unsupervised clustering	BERT+AG-Clus	0.249	0.446	0.585	0.742	0.386	0.308	0.504	0.430
	BERT+DBSCAN	0.133	0.146	0.507	0.131	0.385	0.412	0.575	0.186
Weakly sup. clustering	DeepAlign+ [21]	0.175	0.226	0.336	0.729	0.257	0.208	0.426	0.389
	OA-Mine (no multitask)	0.671	0.634	0.610	0.458	0.601	0.518	0.733	0.225
	OA-Mine	0.704	0.689	0.629	0.747	0.712	0.650	0.781	0.275

Generalization to New Attributes

- ☐ Training: hold out 20% attributes
- Evaluation: on held out attributes
- 5-fold cross validation

Table 3: Performance on discovering new attributes. Experiment conducted with 5-fold cross-validation, where each fold holds out 20% attributes from training.

Methods	ARI	Jaccard	NMI	Recall
BERT+AG-Clus	0.215	0.372	0.308	0.832
BERT+DBSCAN	0.199	0.431	0.129	0.370
DeepAlign+	0.192	0.329	0.303	0.831
OA-Mine	0.599	0.743	0.489	0.688

Generalization to New Attributes (cont')

Table 4: Comparing model predictions on unseen attributes during cross-validation. Red is error.

Attribute	Method	Predicted Cluster		
	BERT+AG-Clus	green mountain, folgers, coffee fool, maxwell house, coffee roasters, nescafe, eight o clock,		
Coffee Brand	DeepAlign+	gourmet, keurig brewers, starbucks, green mountain coffee, donut, dunkin donuts,		
	OA-Mine	starbucks, green mountain, folgers, coffee fo maxwell house, nescafe, san marco coffee,		
Laundry	BERT+AG-Clus	powder, bottle, pacs, original, 2, pods, 32 loads,		
Detergent Form	DeepAlign+	liquid, laundry, wash, pack, stain, natural,		
101111	OA-Mine	liquid, powder, bottle, spray, carton, pods, soap,		

Generalization to Product Types w/o Seed

- □ Training: 90 product types
- Evaluation: 10 new product types

Table 5: Performance on new product types. Models tested on product types not seen during training.

Methods	ARI	Jaccard	NMI	Recall	
BERT+AG-Clus BERT+DBSCAN	0.386 0.385	0.308 0.412	0.504 0.575	0.430 0.186	
OA-Mine	0.658	0.609	0.702	0.231	

Summary

- New problem:
 - Open-world attribute mining
 - Weak supervision
- New data:
 - Amazon data with human annotations for E2E evaluation
- New solution:
 - Attribute value candidate generation w/ LM
 - □ Value grouping with attribute-aware fine-tuning and self-ensemble inference

Thank you!